Процедуры

Виды химических реакций. Химические реакции взрывных превращений Реакции протекающие со звуком

Сонохимия – это применение ультразвука в химических реакциях и процессах. Механизмом, вызывающим звукохимические эффекты в жидкостях, служит явление акустической кавитации.

Ультразвуковая лаборатория и промышленные устройства компании Hielscher используются в широком диапазоне звукохимических процессов.

Звукохимические реакции

Следующие звукохимические эффекты можно наблюдать в химических реакциях и процессах:

  • Увеличение скорости реакции
  • Увеличение выхода реакции
  • Более эффективное использование энергии
  • Звукохимические методы для перехода от одной реакции к другой
  • Улучшение катализатора межфазного переноса
  • Исключение катализатора межфазного переноса
  • Использование неочищенных или технических реагентов
  • Активация металлов и твёрдых веществ
  • Увеличение реакционной способности реагентов или катализаторов ()
  • Улучшение синтеза частиц
  • Покрытие наночастиц

Ультразвуковая кавитация в жидкостях

Кавитация означает «образование, рост и взрывное разрушение пузырьков в жидкости. Кавитационный взрыв производит интенсивный местный нагрев (~5000 K), высокое давление (~1000 атм.), и огромные скорости нагрева/охлаждения (>109 K/сек.) и потоков жидких струй (~400 км/час)»

Кавитационные пузырьки – это пузырьки вакуума. Вакуум создаётся быстро движущейся поверхностью на одной стороне и инертной жидкостью на другой. Получающийся перепад давления служит для преодоления сил сцепления и в жидкости. Кавитация может быть получена различными путями, например, соплами Вентури, соплами высокого давления, высокоскоростным вращением или ультразвуковыми датчиками. Во всех этих системах поступающая энергия преобразуется в трение, турбулентности, волны и кавитацию. Часть поступающей энергии, которая трансформируется в кавитацию, зависит от нескольких факторов, характеризующих движение оборудования, генерирующего кавитацию в жидкости.

Интенсивность ускорения является одним из наиболее важных факторов, влияющих на эффективность трансформации энергии в кавитацию. Более высокое ускорение создаёт больший перепад давления, что, в свою очередь, увеличивает вероятность создания пузырьков вакуума вместо образования волн, распространяющихся через жидкость. Таким образом, чем больше ускорение, тем больше доля энергии, которая преобразуется в кавитацию. В случае с ультразвуковыми датчиками интенсивность ускорения характеризуется амплитудой колебаний. Более высокие амплитуды приводят к более эффективному созданию кавитации. Промышленные устройства компании Hielscher Ultrasonics могут создавать амплитуды до 115 мкм. Эти высокие амплитуды учитывают высокое передаточное отношение мощности, что, в свою очередь, позволяет создавать высокие энергетические плотности до 100 Вт/см³.

В дополнение к интенсивности жидкость должна ускоряться так, чтобы создавать минимальные потери в пересчёте на турбулентность, трение и образование волн. Для этого оптимальным путём будет одностороннее направление движения. Ультразвук используется, благодаря его следующим действиям:

  • подготовка активированных металлов путём восстановления солей металлов
  • генерирование активированных металлов обработкой ультразвуком
  • звукохимический синтез частиц осаждением окисей металлов (Fe, Cr, Mn, Co) например, для применения в качестве катализаторов
  • пропитка металлов или галогенидов металлов на подложках
  • приготовление растворов активированных металлов
  • реакции, задействующие металлы через местное образование органических веществ
  • реакции, задействующие неметаллические твёрдые вещества
  • кристаллизация и осаждение металлов, сплавов, цеолитов и прочих твёрдых веществ
  • изменение поверхностной морфологии и размера частиц в результате высокоскоростных столкновений частиц между собой
    • образование аморфных наноструктурных материалов, включая переходные металлы с высокой площадью поверхности, сплавы, карбиды, оксиды и коллоиды
    • укрупнение кристаллов
    • выравнивание и удаление покрытий из пассивирующих оксидов
    • микроманипулирование (разделение на фракции) мелких частиц
  • приготовление коллоидов (Ag, Au, Q-размерных CdS)
  • включение гостевых молекул в твёрдые вещества с неорганической прослойкой
  • сонохимия полимеров
    • деградация и модифицирование полимеров
    • синтез полимеров
  • сонолизис органических загрязняющих веществ в воде

Звукохимическое оборудование

Большинство упомянутых звукохимических процессов может быть подогнано под прямоточную работу. Мы будем рады помочь вам в выборе звукохимического оборудования для ваших нужд. Для исследований и проведения испытаний процессов мы рекомендуем применять наши лабораторные приборы или устройство

Выделение звука в химических реакциях чаще всего наблюдается при взрывах, когда резкое повышение температуры и давления вызывает колебания в воздухе. Но можно обойтись и без взрывов. Если на питьевую соду налить немного уксуса, слышится шипение и выделяется углекислый газ: NaHCО3 + СН3СООН = CH3COONa + Н2О + СО2. Понятно, что в безвоздушном пространстве ни эта реакция, ни взрыв не будут слышны.

Другой пример: если на дно стеклянного цилиндра налить немного тяжёлой концентрированной серной кислоты, затем сверху налить слой лёгкого спирта, после чего поместить на границу между двумя жидкостями кристаллики перманганата калия (марганцовки), то будет слышно довольно громкое потрескивание, а в темноте видны яркие искры. А вот очень интересный пример «звукохимии».

Все слышали, как гудит пламя в печке.

Гудение раздаётся и в том случае, если поджечь водород, выходящий из трубки, и опустить конец трубки в сосуд конической или шарообразной формы. Это явление назвали поющим пламенем.

Известно и прямо противоположное явление — действие звука свистка на пламя. Пламя может как бы «чувствовать» звук, следить за изменениями его интенсивности, создавать своеобразную «световую копию» звуковых колебаний.

Так что всё в мире взаимосвязано, в том числе даже такие, казалось бы, далёкие друг от друга науки, как химия и акустика.

Рассмотрим последний из перечисленных выше признаков химических реакций — выпадение из раствора осадка.

В повседневной жизни такие реакции встречаются нечасто. Некоторые садоводы знают, что если для борьбы с вредителями приготовить так называемую бордоскую жидкость (названа так по городу во Франции Бордо, где ею опрыскивали виноградники) и для этого смешать раствор медного купороса с известковым молоком, то выпадет осадок.

Сейчас редко кто готовит бордоскую жидкость, а вот накипь внутри чайника видели все. Оказывается, это тоже осадок, выпадающий в ходе химической реакции!

Реакция эта такая. В воде есть немного растворимого гидрокарбоната кальция Са(НСО3)2. Это вещество образуется, когда подземные воды, в которых растворён углекислый газ, просачиваются через известковые горные породы.

При этом идёт реакция растворения карбоната кальция (а именно из него состоят известняк, мел, мрамор): СаСО3 + СО2 + Н2О = Са(НСО3)2. Если теперь из раствора испаряется вода, то реакция начинает идти в обратном направлении.

Вода может испаряться, когда раствор гидрокарбоната кальция по каплям собирается на потолке подземной пещеры и эти капли изредка падают вниз.

Так рождаются сталактиты и сталагмиты. Обратная реакция происходит и при нагревании раствора.

Именно так и образуется накипь в чайнике.

И чем больше гидрокарбоната было в воде (тогда воду называют жёсткой), тем больше образуется накипи. А примеси железа и марганца делают накипь не белой, а жёлтой или даже коричневой.

Легко убедиться, что накипь — действительно карбонат. Для этого нужно подействовать на неё уксусом — раствором уксусной кислоты.

В результате реакции СаСО3 + 2СН3СООН = (СН3СОО)2Са + + Н2О + СО2 будут выделяться пузырьки углекислого газа, а накипь начнёт растворяться.

Перечисленные признаки (повторим их ещё раз: выделение света, теплоты, газа, осадка) не всегда позволяют сказать, что реакция действительно идёт.

Например, при очень высокой температуре карбонат кальция СаСО3 (мел, известняк, мрамор) распадается и образуются оксид кальция и углекислый газ: СаСО3 = СаО + СО2, причём в ходе этой реакции тепловая энергия не выделяется, а поглощается и внешний вид вещества мало изменяется.

Другой пример. Если смешать разбавленные растворы соляной кислоты и гидроксида натрия, то никаких видимых изменений не наблюдается, хотя идёт реакция НС1 + NaOH = NaCl + Н2О. В этой реакции едкие вещества — кислота и щёлочь «погасили» друг друга, и в результате получились безобидный хлорид натрия (поваренная соль) и вода.

А вот если смешать растворы соляной кислоты и нитрата калия (калийная селитра), то никакой химической реакции не произойдёт.

Значит, только по внешним признакам не всегда можно сказать, пошла ли реакция.

Рассмотрим наиболее распространённые реакции на примере кислот, оснований, оксидов и солей — основных классов неорганических соединений.

Предисловие
Введение
§ 1. Предмет звукохимии
§ 2. Очерк о развитии звукохимии
§ 3. Экспериментальные методы звукохимии
Глава 1. Звуковое поле и ультразвуковая кавитация
§ 4. Акустическое поле и величины, характеризующие его (основные понятия)
§ 5. Акустическая кавитация в жидкостях
§ 6. Зародыши кавитации в жидкостях
§ 7. Пульсация и схлопываиие кавитациоиных пузырьков
§ 8. Динамика развития кавитациониой области
Глава 2. Экспериментальные и теоретические исследования звукохимических реакций и соиолюминесценции
§ 9. Влияние различных факторов иа протекание звукохимических реакций и соиолюминесценции
§ 10. Соиолюмниесценция в различных жидкостях
§ 11. Физические процессы, приводящие к возникновению звукохимических реакций и соиолюминесценции
§ 12. Спектральные исследования соиолюминесценции
§ 13. Первичные и вторичные элементарные процессы в кавитационном пузырьке
§ 14. Классификация ультразвуковых химических реакций
§ 15. О механизме влияния газов иа протекание звукохимических реакций
§ 16. Акустические поля при низких интенсивностях
§ 17. Низкочастотные акустические поля
Глава 3. Энергетика звукохимических реакций и физико-химических процессов, вызываемых кавитацией
§ 18. Основные пути преобразования энергии акустических колебаний
§ 19. Химико-акустический выход продуктов реакции (энергетический выход)
§ 20. Начальные химико-акустические выходы продуктов ультразвукового расщепления воды
§ 21. Энергетический выход соиолюминесценции
§ 22. Зависимость скорости звукохимических реакций от интенсивности ультразвуковых волн
§ 23. Зависимость скорости физико-химических процессов, вызываемых кавитацией, от иитеисивности ультразвуковых волн
§ 24. Общие количественные закономерности
§ 25. О соотношении между энергетическими выходами звукохимических реакций и сонолюминесценции
Глава 4. Кинетика ультразвуковых химических реакций
§ 26. Стационарное состояние для концентрации радикалов, усредненной по периоду колебаний и объему (первое приближение)
§ 27. Изменение концентрации радикалов, усредненной по объему (второе приближение)
§ 28. Кавитационно-диффузионная модель пространственно-временного распределения радикалов (третье приближение)
§ 29. Место энергии ультразвуковых волн среди других физических методов воздействия на вещество
§ 30. Особенности распространения теплоты от кавитационного пузырька
Глава 5. Звукохимия воды и водных растворов
§ 31. Основные особенности полученных экспериментальных, результатов
§ 32. Сонолиз растворов хлоруксусной кислоты. О возникновении гидратированных электронов в поле ультразвуковых волн
§ 33. Окисление сульфата железа (II) в поле ультразвуковых волн
§ 34. Восстановление сульфата церия (IV) в поле ультразвуковых волн
§ 35. Синтез пероксида водорода при сонолизе воды и водных растворов формиатов
§ 36. Расчет величин начальных химико-акустических выходов
§ 37. Звукохимические реакции в воде и водных растворах в атмосфере азота
§ 38. Инициирование ультразвуковыми волнами цепной реакции стереоизомеризации этилен-1,2-дикарбоновой кислоты и ее эфиров
Заключение. Перспективы применения ультразвуковых волн в науке, технике и медицине
Литература
Предметный указатель

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Введение
    • 1. Понятие о звуке. Звуковые волны
      • 1.1 Область изучения звуковых воздействий на химические процессы
      • 1.2 Методы звукохимии
    • 2. Использование инфразвука в качестве способа интенсификации процессов химической технологии
    • 3. Использование ультразвука в качестве способа интенсификации химических процессов
    • Заключение
    • Введение
    • Двадцать первый век - век био- и нанотехнологий, всеобщей информатизации, электроники, инфразвука и ультразвука. Ультразвук и инфразвук представляют собой волнообразно распространяющееся колебательное движение частиц среды и характеризуются рядом отличительных особенностей по сравнению с колебаниями слышимого диапазона. В ультразвуковом диапазоне частот сравнительно легко получить направленное излучение; ультразвуковые колебания хорошо поддаются фокусировке, в результате чего повышается интенсивность ультразвуковых колебаний в определенных зонах воздействия. При распространении в газах, жидкостях и твердых телах звуковые колебания порождают уникальные явления, многие из которых нашли практическое применение в различных областях науки и техники, появились десятки высокоэффективных, ресурсосберегающих звуковых технологий. В последние годы использование звуковых колебаний начинает играть все большую роль в промышленности и научных исследованиях. Успешно проведены теоретические и экспериментальные исследования в области ультразвуковой кавитации и акустических течений, позволившие разработать новые технологические процессы, протекающие при воздействии ультразвука в жидкой фазе.
    • В настоящее время формируется новое направление химии - звуковая химия, позволяющая ускорить многие химико-технологические процессы и получить новые вещества, наряду с теоретическими и экспериментальными исследованиями в области звукохимических реакций выполнено много практических работ. Развитие и применение звуковых технологий открывает в настоящее время новые перспективы в создании новых веществ и материалов, в придании известным материалам и средам новых свойств и поэтому требует понимания явлений и процессов, происходящих под действием ультразвука и инфразвука, возможностей новых технологий и перспектив их применения.
    • 1. Понятие о звуке. Звуковые волны

Звук -- физическое явление, представляющее собой распространение в виде упругих волн механических колебаний в твёрдой, жидкой или газообразной среде. В узком смысле под звуком имеют в виду эти колебания, рассматриваемые в связи с тем, как они воспринимаются органами чувств животных и человека.

Как и любая волна, звук характеризуется амплитудой и спектром частот. Обычный человек способен слышать звуковые колебания в диапазоне частот от 16--20 Гц до 15--20 кГц. Звук ниже диапазона слышимости человека называют инфразвуком; выше: до 1 ГГц, -- ультразвуком, от 1 ГГц -- гиперзвуком. Громкость звука сложным образом зависит от эффективного звукового давления, частоты и формы колебаний, а высота звука -- не только от частоты, но и от величины звукового давления .

Звуковые волны в воздухе -- чередующиеся области сжатия и разрежения. Звуковые волны могут служить примером колебательного процесса. Всякое колебание связано с нарушением равновесного состояния системы и выражается в отклонении её характеристик от равновесных значений с последующим возвращением к исходному значению. Для звуковых колебаний такой характеристикой является давление в точке среды, а её отклонение -- звуковым давлением .

Если произвести резкое смещение частиц упругой среды в одном месте, например, с помощью поршня, то в этом месте увеличится давление. Благодаря упругим связям частиц давление передаётся на соседние частицы, которые, в свою очередь, воздействуют на следующие, и область повышенного давления как бы перемещается в упругой среде. За областью повышенного давления следует область пониженного давления, и, таким образом, образуется ряд чередующихся областей сжатия и разрежения, распространяющихся в среде в виде волны. Каждая частица упругой среды в этом случае будет совершать колебательные движения.

Рисунок 1 - Движение частиц при распространении волны а) движение частиц среды при распространении продольной волны; б) движение частиц среды при распространении поперечной волны.

Рисунок 2 - Характеристики колебательного процесса

В жидких и газообразных средах, где отсутствуют значительные колебания плотности, акустические волны имеют продольный характер, то есть направление колебания частиц совпадает с направлением перемещения волны. В твёрдых телах, помимо продольных деформаций, возникают также упругие деформации сдвига, обусловливающие возбуждение поперечных (сдвиговых) волн; в этом случае частицы совершают колебания перпендикулярно направлению распространения волны. Скорость распространения продольных волн значительно больше скорости распространения сдвиговых волн .

1.1 Область изучения звуковых воздействий на химические процессы

Раздел химии, который изучает взаимодействие мощных акустических волн и возникающие при этом химические и физико-химические эффекты, называется звукохимией (сонохимией). Звукохимия исследует кинетику и механизм звукохимических реакций, происходящих в объёме звукового поля. К области звукохимии так же относятся некоторые физико-химические процессы в звуковом поле: сонолюминесценция, диспергирование вещества при действии звука, эмульгирование и другие коллоидно-химические процессы. Сонолюминесце мнция -- явление возникновения вспышки света при схлопывании кавитационных пузырьков, рождённых в жидкости мощной ультразвуковой волной. Типичный опыт по наблюдению сонолюминесценции выглядит следующим образом: в ёмкость с водой помещают резонатор и создают в ней стоячую сферическую ультразвуковую волну. При достаточной мощности ультразвука в самом центре резервуара появляется яркий точечный источник голубоватого света -- звук превращается в свет . Основное внимание сонохимия уделяет исследованию химических реакций, возникающих под действием акустических колебаний -- звукохимическим реакциям.

Как правило, звукохимические процессы исследуют в ультразвуковом диапазоне (от 20 кГц до нескольких МГц). Звуковые колебания в килогерцовом диапазоне и инфразвуковой диапазон изучаются значительно реже.

Звукохимия исследует процессы кавитации. Кавитамция (от лат. cavita -- пустота) -- процесс парообразования и последующей конденсации пузырьков пара в потоке жидкости, сопровождающийся шумом и гидравлическими ударами, образование в жидкости полостей (кавитационных пузырьков, или каверн), заполненных паром самой жидкости, в которой возникает. Кавитация возникает в результате местного понижения давления в жидкости, которое может происходить либо при увеличении её скорости (гидродинамическая кавитация), либо при прохождении акустической волны большой интенсивности во время полупериода разрежения (акустическая кавитация), существуют и другие причины возникновения эффекта. Перемещаясь с потоком в область с более высоким давлением или во время полупериода сжатия, кавитационный пузырёк схлопывается, излучая при этом ударную волну.

1.2 Методы звукохимии

Для изучения звукохимических реакций применяют следующие методы: обратный пьезоэлектрический эффект и эффект магнитострикции для генерирования высокочастотных звуковых колебаний в жидкости, аналитическая химия для исследования продуктов звукохимических реакций, обратный пьезоэлектрический эффект -- возникновение механических деформаций под действием электрического поля (используется в акустических излучателях, в системах механических перемещений - активаторах).

Магнитостримкция -- явление, заключающееся в том, что при изменении состояния намагниченности тела его объём и линейные размеры изменяются (используют для генерации ультразвука и гиперзвука).

Инфразвумк -- звуковые волны, имеющие частоту ниже воспринимаемой человеческим ухом. Поскольку обычно человеческое ухо способно слышать звуки в диапазоне частот 16--20"000 Гц, за верхнюю границу частотного диапазона инфразвука обычно принимают 16 Гц. Нижняя же граница инфразвукового диапазона условно определена как 0,001 Гц.

Инфразвук обладает целым рядом особенностей, связанных с низкой частотой колебаний упругой среды: имеет гораздо большие амплитуды колебаний; гораздо дальше распространяется в воздухе, поскольку его поглощение в атмосфере незначительно; проявляет явление дифракции, вследствие чего он легко проникает в помещения и огибает преграды, задерживающие слышимые звуки; вызывает вибрацию крупных объектов вследствие резонанса .

волна ультразвук химический кавитация

2. Использование инфразвука в качестве способа интенсификации химико-технологических процессов

Физическое воздействие на химические реакции в данном случае осуществляется в инфразвуковых аппаратах, - устройствах, в которых для интенсификации технологических процессов в жидких средах используются низкочастотные акустические колебания (собственно инфразвуковые частотой до 20 Гц, звуковые частотой до 100 Гц). Колебания создаются непосредственно в обрабатываемой среде с помощью гибких излучателей различной конфигурации и формы или жестких металлических поршней, соединенных со стенками технологических емкостей через упругие элементы (напр., резиновые). Это дает возможность разгрузить от колебаний источника стенки инфразвукового аппарата, значительно уменьшает их вибрацию и уровень шума в производственных помещениях. В инфразвуковых аппаратах возбуждаются колебания с большими амплитудами (от единиц до десятков мм).

Однако малое поглощение инфразвука рабочей средой и возможность ее согласования с излучателем колебаний (подбор соответствующих параметров источника) и размерами аппаратов (для обработки заданных объемов жидкости) позволяют распространить возникающие при воздействии инфразвука нелинейные волновые эффекты на большие технологические объемы. Благодаря этому инфразвуковые аппараты принципиально отличаются от ультразвуковых, в которых жидкости обрабатываются в небольшом объеме.

В инфразвуковых аппаратах реализуются следующие физические эффекты (один или несколько одновременно): кавитация, высокоамплитудное знакопеременное и радиационное (звукового излучения) давления, знакопеременные потоки жидкости, акустические течения (звуковой ветер), дегазация жидкости и образование в ней множества газовых пузырьков и их равновесных слоев, сдвиг фаз колебаний между взвешенными частицами и жидкостью. Эти эффекты значительно ускоряют окислительно-восстановительные, электрохимические и другие реакции, интенсифицируют в 2-4 раза промышленные процессы перемешивания, фильтрования, растворения и диспергирования твердых материалов в жидкостях, разделения, классификации и обезвоживания суспензий, а также очистку деталей и механизмов и т.д.

Применение инфразвука позволяет в несколько раз снизить удельные энерго- и металлоемкость и габаритные размеры аппаратов, а также обрабатывать жидкости непосредственно в потоке при транспортировании их по трубопроводам, что исключает установку смесителей и других устройств .

Рисунок 3 - Инфразвуковой аппарат для перемешивания суспензий: 1 - мембранный излучатель колебаний; 2 - модулятор сжатого воздуха; 3 - загрузочное устройство; 4 - компрессор

Одна из наиболее распространенных областей применения инфразвука - перемешивание суспензий посредством, например, трубных инфразвуковых аппаратов. Такая машина состоит из одного или нескольких последовательно соединенных гидропневматических излучателей и загрузочного устройства.

3. Использование ультразвука в интенсификации химических процессов

Ультразву мк -- звуковые волны, имеющие частоту выше воспринимаемым человеческим ухом, обычно, под ультразвуком понимают частоты выше 20 000 Герц. Высокочастотные колебания, используемые в промышленности обычно создают с помощью пьезокерамических преобразователей. В тех случаях, когда основное значение имеет мощность ультразвуковых колебаний, используются механические источники ультразвука .

Воздействие ультразвука на химические и физико-химические процессы, протекающие в жидкости, включает: инициирование некоторых химических реакций, изменение скорости, а иногда и направления реакций, возникновение свечения жидкости (сонолюминесценция), создание в жидкости ударных волн, эмульгирование несмешивающихся жидкостей и коалесценцию (слияние частиц внутри подвижной среды или на поверхности тела) эмульсий, диспергирование (тонкое измельчение твёрдых тел или жидкостей) твердых тел и коагуляцию (объединение мелких диспергированных частиц в бомльшие по размеру агрегаты) твердых частиц в жидкости, дегазацию жидкости и т.д. Для осуществления технологических процессов используют ультразвуковые аппараты .

Влияние ультразвука на различные процессы связано с кавитацией (образованием в жидкости при прохождении акустической волны полостей (кавитационных пузырьков), заполненных газом, паром или их смесью) .

Химические реакции, возникающие в жидкости под действием ультразвука (звукохимические реакции), можно условно подразделить на: а) окислительно-восстановительные, реакции, протекающие в водных растворах между растворенными веществами и продуктами разложения молекул воды внутри кавитационного пузырька (H, ОН,), например:

б) Реакции между растворенными газами и веществами с высоким давлением пара, находящимися внутри кавитационного пузырька:

в) Цепные реакции, инициируемые не радикальными продуктами разложения воды, а каким-либо другим веществом, диссоциирующимся в кавитационном пузырьке, например, изомеризация малеиновой к-ты в фумаровую под действием Br, образующегося в результате звукохимической диссоциации.

г) Реакции с участием макромолекул. Для этих реакций важна не только кавитация и связанные с нею ударные волны и кумулятивные струи, но и механические силы, расщепляющие молекулы. Образующиеся при этом макрорадикалы в присутствии мономера способны инициировать полимеризацию.

д) Инициирование взрыва в жидких и твердых взрывчатых веществах.

е) Реакции в жидких неводных системах, например, пиролиз и окисление углеводородов, окисление альдегидов и спиртов, алкилирование ароматических соединений и др. .

Основная энергетическая характеристика звукохимических реакций - энергетический выход, который выражается числом молекул продукта, образовавшихся при затрате 100 эВ поглощенной энергии. Энергетический выход продуктов окислительно-восстановительных реакций обычно не превышает нескольких единиц, а для цепных реакций достигает нескольких тысяч.

Под действием ультразвука во многих реакциях возможно увеличение скорости в несколько раз (например, в реакциях гидрирования, изомеризации, окисления и др.), иногда одновременно возрастает и выход.

Воздействие ультразвука важно учитывать при разработке и проведении различных технологических процессов (напр., при воздействии на воду, в которой растворен воздух, образуются оксиды азота и), для понимания процессов, сопровождающих поглощение звука в средах .

Заключение

В настоящее время звуковые колебания широко применяются в промышленности, являясь перспективным технологическим фактором, позволяющим при необходимости резко интенсифицировать производственные процессы.

Использование мощного ультразвука в технологических процессах получения и обработки материалов и веществ позволяет:

Снизить себестоимость процесса или продукта,

Получать новые продукты или повысить качество существующих,

Интенсифицировать традиционные технологические процессы или стимулировать реализацию новых,

Способствовать улучшению экологической ситуации за счёт снижения агрессивности технологических жидкостей.

Необходимо, однако, отметить, что ультразвук оказывает крайне неблагоприятное воздействие на живые организмы. Для того, чтобы уменьшить такие воздействия, ультразвуковые установки рекомендуется размещать в специальных помещениях, используя для проведения технологических процессов на них системы дистанционного управления. Большой эффект дает автоматизация этих установок .

Более экономичный способ защиты от воздействия ультразвука заключается в использовании звукоизолирующих кожухов, ко­торыми закрываются ультразвуковые установки, или экранов, располагающихся на пути распространения ультразвука. Эти экраны изготавливают из листовой стали или дюралюминия, пластмассы либо из специальной резины.

Список использованных источников

1. Маргулис M.А. Основы звукохимии (химические реакции в акустических полях); учеб. пособие для хим. и хим.-технолог. Специальностей вузов / М.А. Маргулис. M.: Высшая школа, 1984. 272 с

2. Susliсk K.S. Ultrasound. Its chemical, physical and biological effects. Ed.: VCH, N. Y., 336 р.

3. Кардашев Г.А. Физические методы интенсификации процессов химической технологии. М.: Химия, 1990, 208 с.

5. Люминисценция

6. Ультразвук

Размещено на Allbest.ru

Подобные документы

    Процессы химической технологии. Разработка схемы химико-технологического процесса. Критерии оптимизации. Топологический метод и ХТС. Понятия и определения теории графов. Параметры технологического режима элементов ХТС. Изучение стохастических процессов.

    лекция , добавлен 18.02.2009

    Теория химических процессов органического синтеза. Решение: при алкилировании бензола пропиленом в присутствии любых катализаторов происходит последовательное замещение атомов водорода с образованием смеси продуктов разной степени алкилирования.

    курсовая работа , добавлен 04.01.2009

    Органический синтез как раздел химии, предмет и методы его изучения. Сущность процессов алкилирования и ацилирования, характерные реакции и принципы протекания. Описание реакций конденсации. Характеристика, значение реакций нитрования, галогенирования.

    лекция , добавлен 28.12.2009

    Этапы изучения процессов горения и взрывов. Основные виды взрывов, их классификация по типу химических реакций и плотности вещества. Реакции разложения, окислительно-восстановительные, полимеризации, изомеризации и конденсации, смесей в основе взрывов.

    реферат , добавлен 06.06.2011

    Промышленная водоподготовка. Комплекс операций, обеспечивающих очистку воды. Гомогенные и гетерогенные некаталитические процессы в жидкой и газовой фазах, их закономерности и способы интенсификации. Сравнение различных типов химических реакторов.

    лекция , добавлен 29.03.2009

    Методы получения красителей. Получение сульфанилата натрия синтезом. Характеристика исходного сырья и получаемого продукта. Расчет химико–технологических процессов и оборудования. Математическое описание химического способа получения сульфанилата натрия.

    дипломная работа , добавлен 21.10.2013

    Понятие и расчет скорости химических реакций, ее научное и практическое значение и применение. Формулировка закона действующих масс. Факторы, влияющие на скорость химических реакций. Примеры реакций, протекающих в гомогенных и гетерогенных системах.

    презентация , добавлен 30.04.2012

    Понятие и условия прохождения химических реакций. Характеристика реакций соединения, разложения, замещения, обмена и их применение в промышленности. Окислительно-восстановительные реакции в основе металлургии, суть валентности, виды переэтерификации.

    реферат , добавлен 27.01.2012

    Значение воды для химической промышленности. Подготовка воды для производственных процессов. Каталитические процессы, их классификация. Влияние катализатора на скорость химико-технологических процессов. Материальный баланс печи для сжигания серы.

    контрольная работа , добавлен 18.01.2014

    Механизмы воздействия ультразвука на химческие реакции. Учет его при разработке и проведении технологических процессов. Технологии, реализуемые с помощью ультразвука. Прецизионная очистка и обезжиривание. Дегазация расплавов и сварка полимеров и металлов.

Невероятные факты

Молекулярный материал в нашей повседневной жизни настолько предсказуем, что мы часто забываем, какие удивительные вещи могут твориться с основными элементами .

Даже внутри нашего тела происходит множество удивительных химических реакций.

Вот несколько увлекательных и впечатляющих химических и физических реакций в форме гифок, которые напомнят вам курс химии.


Химические реакции

1. "Фараонова змея" - распад тиоцианата ртути

Горение тиоцианата ртути приводит к его разложению на три других химических вещества. Эти три химических вещества в свою очередь разлагаются на еще три вещества, что приводит к развертыванию огромной "змеи".

2. Горящая спичка

Спичечная головка содержит красный фосфор, серу и бертолетову соль. Тепло, генерируемое фосфором, разлагает бертолетову соль и в процессе высвобождает кислород. Кислород в сочетании с серой производит кратковременное пламя, которое мы используем, чтобы зажечь, например, свечу.

3. Огонь + водород

Газообразный водород легче воздуха и его можно разжечь пламенем или искрой, что приведет к впечатляющему взрыву. Вот почему сейчас чаще используется гелий, а не водород для наполнения аэростатов.

4. Ртуть + алюминий

Ртуть проникает сквозь защитный слой окиси (ржавчину) алюминия, заставляя его ржаветь намного быстрее.

Примеры химических реакций

5. Змеиный яд + кровь

Одна капля яда гадюки, попавшая в чашку Петри с кровью, заставляет ее свернуться в толстый комок твердого вещества. Именно это происходит в нашем теле, когда нас кусает ядовитая змея.

6. Железо + раствор медного купороса

Железо заменяет медь в растворе, превращая медный купорос в железный купорос. Чистая медь собирается на железе.

7. Воспламенение емкости с газом

8. Хлорная таблетка + медицинский спирт в закрытой бутылке

Реакция приводит к увеличению давления и заканчивается разрывом контейнера.

9. Полимеризация п-нитроанилина

На гифке к половине чайной ложки п-нитроанилина или 4-нитроанилина добавляют несколько капель концентрированной серной кислоты.

10. Кровь в перекиси водорода

Фермент в крови, называемый каталаза, превращает перекись водорода в воду и газообразный кислород, создавая пену кислородных пузырей.

Химические опыты

11. Галлий в горячей воде

Галлий, который в основном используется в электронике, имеет температуру плавления составляющую 29,4 градуса по Цельсию, а значит будет плавиться в руках.

12. Медленный переход бета-олова в альфа-модификацию

При холодной температуре бета-аллотроп олова (серебристый, металлический) самопроизвольно переходит в альфа-аллотроп (серый, порошкообразный).

13. Полиакрилат натрия + вода

Полиакрилат натрия - тот же материла, который используется в детских подгузниках, действует как губка, впитывая влагу. При смешивании с водой, соединение превращается в твердый гель, а вода уже не является жидкостью и не может выливаться.

14. Газ Радон 220 впрыснут в туманную камеру

Следы в форме буквы V появляются благодаря двум альфа частицам (ядер гелия-4), которые выделяются, когда радон распадается на полоний, а затем свинец.

Домашние химические опыты

15. Шарики из гидрогеля и разноцветная вода

В данном случае действует диффузия. Гидрогель представляет собой гранулы полимера, которые очень хорошо впитывают воду.

16. Ацетон + пенопласт

Пенопласт состоит из пенополистирола, который, будучи растворенным в ацетоне, выпускает воздух в пену, что создает вид, будто вы растворяете большое количество материала в малом количестве жидкости.

17. Сухой лед + средство для мытья посуды

Сухой лед, помещенный в воду, создает облако, а средство для мытья посуды в воде удерживает углекислый газ и водяной пар в форме пузыря.

18. Капля моющего средства, добавленная к молоку с пищевым красителем

Молоко - это в основном вода, но оно также содержит витамины, минералы, белки и крошечные капли жира, находящиеся во взвешенном состоянии в растворе.

Средство для мытья посуды ослабляет химические связи, которые удерживают белки и жиры в растворе. Молекулы жира сбиваются с толку по мере того, как молекулы мыла начинают метаться, чтобы соединиться с молекулами жира, пока раствор равномерно не перемешается.

19. "Слоновья зубная паста"

Дрожжи и теплую воду наливают в контейнер с моющим средством, перекисью водорода и пищевым красителем. Дрожжи служат катализатором выделения кислорода из перекиси водорода, создавая множество пузырей. В результате образуется экзотермическая реакция, с образованием пены и выделением тепла.

Химические опыты (видео)

20. Перегорание лампочки

Вольфрамовая нить ломается, вызывая короткое замыкание электрической цепи, которое заставляет нить светиться.

21. Ферромагнитная жидкость в стеклянной банке

Ферромагнитная жидкость – это жидкость, которая сильно намагничивается в присутствии магнитного поля. Она используется в жестких дисках и в машиностроении.

Еще ферромагнитной жидкости.

22. Йод + алюминий

Окисление тонкодисперсного алюминия происходит в воде, формируя темно-фиолетовые пары.

23. Рубидий + вода

Рубидий очень быстро реагирует с водой, формируя гидроокись рубидия и газообразный водород. Реакция настолько быстрая, что если бы ее проводить в стеклянном сосуде, он может разбиться.